B. Wayne Bequette

Wayne Bequette

Professor, Chemical and Biological Engineering

Research Expertise
Smart manufacturing, modeling, control, machine learning
Research

Semiconductor manufacturing operations are complex, with many processing steps. Data analytics techniques to predict problems early in the process, before finding that the final product does not meet specifications, can save millions of dollars.

Publications

Yang S, Bequette BW. (2022). Observational process data analytics using causal inference. AIChE Journal; e17986. doi:10.1002/aic.17986 

Yerimah LE, Ghosh S, Wang Y, Cao Y, Flores-Cerrillo J, Bequette BW. (2022) Process prediction and detection of faults using bidirectional recurrent neural networks on real plant data. J. Adv. Manuf. Process; doi:10.1002/amp2.10124.

Ghosh S, Bequette BW. (2020) Process Systems Engineering and the Human-In-the-Loop – The Smart Control Room. Ind. Eng. Chem. Res. 59(6)2422-2429. doi: 10.1021/acs.iecr.9b04739

Bequette BW. (2019) Commentary: The Smart Human in Smart Manufacturing. Ind. Eng. Chem. Res. 58(42):19317-19321. doi:10.1021/acs.iecr.9b03544

Shu Y, Navarathna P, Ghosh S, Bequette BW. (2020) Hybrid modeling in the era of smart manufacturing. Comp. Chem. Engng. 140;106784, doi: 10.1016/j.compchemeng.2020.106874

Setalvad, T., I. Trachtenberg, B.W. Bequette and T.F. Edgar, (1989). Optimization of a Low Pressure CVD Reactor for the Deposition of Thin Films, Ind. Eng. Chem. Res.   28 (8), 1162-1170

Back to top