Associate Professor, Materials Science and Engineering
Using simulations of electron transport and quantum dynamics, we computationally design materials for low-resistance interconnects needed for further downscaling chips, and for future computing technologies, e.g., spintronics and quantum computers.
Kumar, S. Multunas, C., Defay, B., Gall, D., Sundararaman, R. (2022) "Ultralow electron-surface scattering in nanoscale metals leveraging Fermi-surface anisotropy", Phys. Rev. Mater. 6, 085002
Kumar, S., Multunas, C., Sundararaman, R. (2022) "Fermi surface anisotropy in plasmonic metals increases the potential for efficient hot carrier extraction", Phys. Rev. Mater. 6, 125201
Habib, A., Xu, J., Ping, Y., Sundararaman, R. (2022) "Electric fields and substrates dramatically accelerate spin relaxation in graphene", Phys. Rev. B 105, 115122
Zhang, M., Kumar, S., Sundararaman, R., Gall, D. (2021) "Resistivity scaling in epitaxial MAX-phase Ti4SiC3(0001) layers", J. Appl. Phys. 130, 034302
Chen, L., Kumar, S., Yahagi, M., Ando, D., Sutou, Y., Gall, D., Sundararaman, R., Koike, J. (2021) "Interdiffusion reliability and resistivity scaling of intermetallic compounds as advanced interconnect materials", J. Appl. Phys. 129, 035301